
Quantum power in de Broglie–Bohm theory

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2007 J. Phys. A: Math. Theor. 40 5155

(http://iopscience.iop.org/1751-8121/40/19/015)

Download details:

IP Address: 171.66.16.109

The article was downloaded on 03/06/2010 at 05:10

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1751-8121/40/19
http://iopscience.iop.org/1751-8121
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND THEORETICAL

J. Phys. A: Math. Theor. 40 (2007) 5155–5162 doi:10.1088/1751-8113/40/19/015

Quantum power in de Broglie–Bohm theory

Donald H Kobe

Department of Physics, University of North Texas, Denton, TX 76203-1427, USA

Received 30 June 2006, in final form 15 March 2007
Published 24 April 2007
Online at stacks.iop.org/JPhysA/40/5155

Abstract
In the de Broglie–Bohm approach to quantum mechanics for a charged particle
in a time-dependent electromagnetic field the time derivative of the energy is
equal to the classical power plus a quantum power. We show that the average
of the quantum power is zero. The de Broglie–Bohm energy is obtained from
the quantum mechanical energy operator, which is the Hamiltonian with the
gauge-dependent scalar potential subtracted. The time derivative of the average
de Broglie–Bohm energy is shown to be equal to Ehrenfest’s theorem for the
quantum energy operator.

PACS numbers: 03.65.Ta, 03.65.Sq, 03.65.Ca, 03.65.−w

1. Introduction

Shortly after the introduction of quantum mechanics by Heisenberg and Schrödinger, attempts
were made by Madelung [1] and de Broglie [2] (see also [3] and references therein) to give it
a causal interpretation in terms of trajectories. These attempts were superseded by the more
popular Copenhagen interpretation that involves the collapse of the wavefunction. However,
in the 1950s Bohm [4] and Takabayasi [5–8] revived this approach and addressed a number
of criticisms of the theory. de Broglie [3, 9] also revisited his original approach. The book
by Holland [10] in 1993 on the de Broglie–Bohm causal interpretation gave a new impetus
to the subject. In the de Broglie–Bohm [11] approach to quantum mechanics particles follow
‘quantum trajectories’ that are different from the classical trajectories because of the addition
of a quantum potential to the classical potentials present. These quantum trajectories have
been called ‘surrealistic’ by Englert et al [12] because they appear nonintuitive. Nevertheless,
the quantum trajectories have been useful in treating the tunnelling time problem by Leavens
and co-workers [13]. The quantum trajectories have also been used to treat quantum chaos in
a manner similar to classical chaos [14, 15].

In this paper we consider de Broglie–Bohm theory for the energy of a single, charged
quantum particle in an external electromagnetic field. The de Broglie–Bohm energy is the
sum of a kinetic energy term, the classical potential energy and a quantum potential. The
quantum potential arises from the quantum kinetic energy and is therefore a ‘fictitious’ potential
analogous to the centrifugal potential. The time derivative of the de Broglie–Bohm energy is
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equal to the classical power due to the nonconservative electric field plus a quantum power. If
the de Broglie–Bohm average of the time derivative of the de Broglie–Bohm energy is taken,
the result is shown to be equal to Ehrenfest’s theorem for the energy operator in standard
quantum mechanics. To derive this result we prove that the de Broglie–Bohm average of the
quantum power is zero. The average of the time derivative of the de Broglie–Bohm energy
is equal to the time derivative of its average. The expectation value of the quantum energy
operator, the de Broglie–Bohm energy, and their time derivatives are all completely gauge
invariant.

The extension of the de Broglie–Bohm approach to a charged particle in a time-dependent
electromagnetic field is a significant generalization from previous treatments [10]. The most
significant result in this paper is the proof that the de Broglie–Bohm average of the quantum
power is zero. This result is the key to showing that the time derivative of the average de
Broglie–Bohm energy is the same as Ehrenfest’s theorem for the energy operator in standard
quantum mechanics. The proper energy operator is the sum of the kinetic energy operator
plus the conservative potential energy. This operator differs from the Hamiltonian by not
including the gauge-dependent scalar potential of the time-dependent electromagnetic field
[18–20]. The de Broglie–Bohm energy, including the quantum potential, is derived from this
quantum mechanical energy operator. Ehrenfest’s theorem for energy is also proved using this
energy operator.

In section 2 we review the de Broglie–Bohm approach to quantum mechanics including
the quantum Newton’s second law. This quantum Newton’s second law is used in section 3 to
show that the time derivative of the de Broglie–Bohm energy is equal to the classical power due
to the nonconservative electric field plus a quantum power. We then show in section 4 that the
average of the quantum power is zero. The time derivative of the average de Broglie–Bohm
energy is shown in section 5 to be equivalent to Ehrenfest’s theorem for energy. Finally,
the conclusion in section 6 also includes some discussion of the physical significance of the
quantum power and quantum potential.

2. de Broglie–Bohm theory for charged particle in an electromagnetic field

We apply the de Broglie–Bohm formulation of quantum mechanics to a single charged particle
in an external electromagnetic field [5, 10, 16]. We summarize the equations here to obtain
the quantum Newton’s second law and to establish the notation.

The Schrödinger equation for a particle of mass m and charge q in an external
electromagnetic field characterized by the vector potential A(r, t) and scalar potential φ(r, t)
with a wavefunction ψ(r, t) is

Ĥ (r, t)ψ =
{

1

2m
(p̂ − qA)2 + qφ + V

}
ψ = ih̄

∂ψ

∂t
, (1)

where the Hamiltonian operator is Ĥ (r, t) and the potential energy V = V (r) is conservative.
The canonical momentum operator p̂ = −ih̄∇ is conjugate to the coordinate r.

In the de Broglie–Bohm approach the wavefunction ψ is written in the polar form
ψ = R exp{iS/h̄} in terms of its modulus R = R(r, t) and phase S/h̄ = S(r, t)/h̄. We
assume that the modulus and phase are at least twice differentiable in space and time. When
this wavefunction is substituted into the Schrödinger equation (1) a complex equation involving
R and S is obtained.

The real part of the complex equation resulting from the Schrödinger equation is a quantum
Hamilton–Jacobi equation,

1

2m
(∇S − qA)2 + qφ + V + Q +

∂S

∂t
= 0. (2)
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The quantum Hamilton–Jacobi equation differs from the classical Hamilton–Jacobi equation
[17] by the addition of a quantum potential Q = Q(r, t) defined as [4]

Q = − h̄2

2m

∇2R

R
, (3)

which in general is nonconservative. Since the quantum potential originates from the quantum
kinetic energy, it is a ‘fictitious potential’ in the same sense as the centrifugal potential.

The first term in equation (2) is the de Broglie–Bohm kinetic energy, since the de Broglie–
Bohm mechanical momentum mv is defined as

mv = ∇S(r, t) − qA(r, t), (4)

where ∇S = p is the canonical momentum in Hamilton–Jacobi theory [17]. Under a gauge
transformation the velocity is invariant. The coordinate r in R and S is now interpreted as a
quantum trajectory r = r(t). The velocity is therefore v = ṙ(t), so equation (4) gives a set of
coupled first-order differential equations for the quantum trajectory r = r(t). When an initial
position r(0) is specified, their solution is a quantum trajectory r(t) for the particle. This
approach to quantum trajectories is called the minimal de Broglie–Bohm theory [10].

The imaginary part of the complex equation resulting from the Schrödinger equation is,
after some rearranging, the equation of continuity,

∂ρ

∂t
+ ∇ · J = 0, (5)

for probability conservation. The probability density is ρ = ρ(r, t) = R2 and the current
density is J = J(r, t) = vρ = ṙρ.

Taking the negative gradient of the quantum Hamilton–Jacobi equation (2) and using
the hydrodynamic derivative d

dt
= ṙ · ∇ − ∂

∂t
, we obtain a quantum Newton’s second law

[5, 7, 10]

mr̈(t) = qE(r, t) + q ṙ(t) × B(r, t) − ∇V − ∇Q. (6)

The first and second terms on the right-hand side of equation (6) are the electric and Lorentz
forces, respectively, where the electric field E = E(r, t) and the magnetic field B = B(r, t)
are

E = −∇φ − ∂A
∂t

, B = ∇ × A, (7)

in terms of the scalar and vector potentials. The third term is the conservative force −∇V (r)
due to the conservative potential energy in the Schrödinger equation (1). The last term in
equation (6) is the quantum force −∇Q, which in general is nonconservative because it
depends on time. Except for the quantum force, equation (6) is the classical Newton’s second
law.

3. Quantum energy and power

The energy of a charged particle in an external time-dependent electromagnetic field is not
conserved, but its time rate of change is equal to the power exchanged with the field. Here
we find the de Broglie–Bohm energy, which is time dependent because some forces are
nonconservative [18–20].

The scalar product of the velocity v with the quantum Newton’s second law (6) gives

d

dt

(
1

2
mv2 + V

)
= v · qE(r, t) − v · ∇Q, (8)
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since the magnetic field does no work. The potential V is conservative so dV/dt = ṙ · ∇V .
The first term on the right-hand side is the power due to the nonconservative electric field and
the second term is due to the quantum force.

Using the definition of the total time derivative of the quantum potential, we can write the
second term on the right-hand side of equation (8) as

−ṙ · ∇Q = −dQ

dt
+

∂Q

∂t
, (9)

since v = ṙ. Substituting equation (9) into equation (8) and rearranging, we obtain the total
de Broglie–Bohm energy

E = 1
2mv2 + Q + V, (10)

that includes the quantum potential Q. The time-dependent scalar potential φ(r, t) is not
included in equation (10) because φ(r, t) is nonconservative and gauge dependent. Therefore
the de Broglie–Bohm energy is gauge invariant (up to a constant) [19]. The quantum
Hamilton–Jacobi equation (2) shows that the energy in equation (10) can also be written
as E = −∂S/∂t − qφ, where the right-hand side is gauge invariant [6].

From equations (8)–(10) the time derivative of the energy is

d

dt
E = P, (11)

where the total power P is

P = v · qE(r, t) +
∂Q

∂t
. (12)

The first term on the right-hand side is the classical power due to the nonconservative electric
field. The second term ∂Q/∂t is defined as the quantum power [10]. The quantum power
in equation (12) shows the deviation of the quantum system from the classical power. In the
next section we show that the average of the quantum power is zero, so the deviation is both
positive and negative. In other words, the system borrows energy or gives up energy per unit
time to an unspecified source or sink, which Holland [10] identifies as the quantum field.

If the classical power due to the time-dependent electric field and the quantum power
are both zero in equation (12), the energy E in equation (10) is conserved. In this case the
quantum potential Q has no explicit time dependence, so the magnitude of the wavefunction
is also time independent and the system is described by a stationary state wavefunction.
For a stationary state, the wavefunction may have classically allowed regions and classically
forbidden regions. Since the quantum potential is the total kinetic energy for a stationary
state with a phase S = S(t) only, Q > 0 is positive in a classically allowed region and
Q < 0 is negative in a classically forbidden region. For a one-dimensional system the
definition of quantum potential in equation (3) shows that the second derivative (with respect
to spatial variable x) of the modulus R′′(x, t) < 0 is negative in an allowed region and positive
R′′(x, t) > 0 in a forbidden region. In other words, the curvature of the modulus is down in
an allowed region and up in a forbidden region, where the wavefunction is damped. Thus the
quantum potential gives some insight into the qualitative behaviour of the system.

4. Average quantum power and energy

We now take the de Broglie–Bohm average of equation (11). We first prove that the average
quantum power is zero. Then we show that the de Broglie–Bohm average of the time derivative
of the energy is equal to the time derivative of the average energy.
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The de Broglie–Bohm average of equation (11) is〈
d

dt
E
〉
B

= q 〈v · E〉B +

〈
∂Q

∂t

〉
B

, (13)

where the de Broglie–Bohm average is 〈· · ·〉B = ∫
d3r ρ(· · ·) and the probability density

ρ = ρ(r, t) = R2 is in general time dependent.
Using integration by parts, we show that the de Broglie–Bohm average of the quantum

power is zero: 〈
∂Q

∂t

〉
B

= − h̄2

2m

∫
d3r R2 ∂

∂t

(∇2R

R

)

= − h̄2

2m

∫
d3r

(
R∇2 ∂R

∂t
− ∂R

∂t
∇2R

)

= − h̄2

2m

∫
d3r ∇ ·

(
R∇ ∂R

∂t
− ∂R

∂t
∇R

)

= 0, (14)

because the boundary condition is r2R → 0 as r → ∞.

Using the equation of continuity (5), we now show that the time derivative of the de
Broglie–Bohm average energy is equal to the average of the time derivative of the energy.
Since J = vρ, the time derivative of the de Broglie–Bohm average energy is

d

dt
〈E〉B =

∫
d3r

(
∂ρ

∂t
E + ρ

∂E
∂t

)

=
∫

d3r

(
−E∇ · J + ρ

∂E
∂t

)

=
∫

d3r

(
ρv · ∇E + ρ

∂E
∂t

)

=
〈

d

dt
E
〉
B

, (15)

from integration by parts because of the boundary condition. This relation holds for the
time derivative of the de Broglie–Bohm average of any quantity because of the equation of
continuity [10].

When equations (14) and (15) are substituted into equation (13) we obtain the time
derivative of the de Broglie–Bohm average energy

d

dt
〈E〉B = q〈v · E〉B, (16)

where the right-hand side is the average of the classical power. Equation (16) is the same
form as the classical power for a particle in an electromagnetic field. It is also reminiscent of
Ehrenfest’s theorem for the energy operator in standard quantum mechanics.

5. Ehrenfest’s theorem for energy

Ehrenfest’s theorem in standard quantum mechanics uses the expectation values of quantum
operators. If the energy operator is used, we obtain the Ehrenfest theorem for energy. We
now show the Ehrenfest theorem for energy is equivalent to equation (16) in de Broglie–Bohm
theory.
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The energy of a particle should be gauge invariant (up to a constant), so it is not in general
equal to the Hamiltonian [19]. The Hamiltonian, which depends on the gauge, is a Legendre
transformation on the Lagrangian to express it in terms of the canonical momentum. On
the other hand, the energy operator Ê is the sum of kinetic energy operator and conservative
potential energy. It is equal to the Hamiltonian operator in equation (1) minus the time-
dependent scalar potential [18–20]

Ê = 1

2m
(p̂ − qA)2 + V (r), (17)

where mv̂ = p̂ − qA is the gauge-invariant mechanical momentum operator and p̂ = −ih̄∇ is
the canonical momentum operator. Ehrenfest’s theorem for the energy is [18]

d

dt
〈Ê〉ψ = 〈P̂ 〉ψ, (18)

where P̂ is the quantum power operator. The quantum expectation value is defined as usual
to be 〈· · ·〉ψ = ∫

d3r ψ∗(· · ·)ψ. The power operator P̂ on the right-hand side of equation (18)
is [18–20]

P̂ = 1
2q{v̂; E}, (19)

due to the time-dependent electric field E = E(r, t). The power operator is Hermitian because
the anticommutator of the dot product between two vector operators Ŷ and Ẑ is defined to be
the Hermitian operator {Ŷ; Ẑ} = Ŷ · Ẑ + Ŷ · Ẑ.

The expectation value of the Hermitian energy operator in equation (17) is real and equal
to the de Broglie–Bohm average of the energy in equation (10),

〈Ê〉ψ =
∫

d3r ψ∗
(

1

2m
(p̂ − qA)2 + V

)
R exp(iS/h̄)

=
∫

d3r ρ Re

(
1

2m
[(−ih̄R−1∇R + ∇S − qA)2 − h̄2∇ · (R−1∇R)] + V

)

=
∫

d3r ρ

(
1

2
mv2 + Q + V

)
= 〈E〉B , (20)

where the quantum potential Q is given in equation (3), the de Broglie–Bohm mechanical
momentum is mv = ∇S − qA and the wavefunction in polar form is ψ = R exp(iS/h̄). From
equation (20) we see that the quantum potential originates from the quantum kinetic energy
operator, which justifies it being called a ‘fictitious’ potential.

The expectation value of the Hermitian power operator in equation (18) is equal to the de
Broglie–Bohm average of the power in equation (16),

q

2
〈{v̂; E}〉ψ = q

2

∫
d3r ψ∗{v̂; E}ψ

= q

m
Re

∫
d3r ψ∗E · (p̂ − qA)R exp(iS/h̄)

= q

m

∫
d3r ρE · (∇S − qA)

= q 〈v · E〉B , (21)

where the de Broglie–Bohm mechanical momentum is mv = ∇S − qA.
Therefore, when equations (20) and (21) are substituted into Ehrenfest’s theorem (18), we

obtain the time rate of change of the de Broglie–Bohm average energy d
dt

〈E〉B = q 〈v · E〉B in
equation (16). In general, all the Ehrenfest theorems are in one-to-one correspondence with
the corresponding de Broglie–Bohm average equations.
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6. Conclusion

The de Broglie–Bohm theory offers an alternative interpretation to the usual interpretation of
quantum mechanics based on the collapse of the wavefunction. de Broglie–Bohm theory gives
a Hamilton–Jacobi equation with a quantum potential, so it is interpreted in terms of quantum
trajectories that differ from the classical ones because of the effect of the quantum force. An
equation of continuity for probability conservation is also obtained. Since only averages are
observable, the resulting theory is similar to classical statistical mechanics.

The de Broglie–Bohm energy of a quantum particle in a time-dependent electromagnetic
field is the sum of a de Broglie–Bohm kinetic energy, a quantum potential and a conservative
potential energy. The time derivative of this energy is equal to the power due to a
nonconservative electric field plus a quantum power. The average power in de Broglie–
Bohm theory is equal to the expectation value of the power operator in standard quantum
theory. We show that the de Broglie–Bohm average of the quantum power term is zero, so the
time derivative of the de Broglie–Bohm average energy is equivalent to Ehrenfest’s theorem
for energy. Since the de Broglie–Bohm theory is an interpretation of quantum mechanics, the
equivalence of the de Broglie–Bohm average power with the expectation value of the power
operator in standard quantum mechanics is reassuring.

The quantum power ∂Q/∂t indicates how much the quantum system deviates from the
system with only a classical power term. The average quantum power is zero, so the deviation
is both positive and negative. An external source or sink of energy is required for this deviation
that may be attributed to the quantum field. The de Broglie–Bohm theory is not completely
satisfactory in accounting for this lack of energy conservation [10].

For a stationary state in one dimension, the quantum potential is the only contribution to
the kinetic energy since p = 0. If the system is in a classically allowed or forbidden region, the
quantum potential Q will be positive or negative, respectively. The corresponding curvature
of the modulus of the wavefunction R will be negative or positive, indicating downward or
upward curvature, respectively. In a classically forbidden region, the wavefunction would be
expected to have an upward curvature indicating that it is decreasing rapidly. Thus, in the case
of a stationary state the quantum potential is useful in giving a qualitative understanding of
the system.

Acknowledgments

I would like to thank Professor W P Schleich and Professor Carlos Ordonez for discussions
and Professor M O Scully for his encouragement. This work is partially supported by a grant
from ONR N00014-03-1-0639/TAMU TEES 53494.

References

[1] Madelung E 1926 Zeit. f. Phys. 40 322
[2] de Broglie L 1926 Nature 118 441
[3] de Broglie L 1960 Non-Linear Wave Mechanics: A Causal Interpretation (Amsterdam: Elsevier)
[4] Bohm D 1952 Phys. Rev. 85 166

Bohm D 1952 Phys. Rev. 85 180
Wheeler J A and Zurek W H (ed) 1983 Quantum Theory of Measurement (Princeton: Princeton University

Press) pp 369–396 (reprinted in)
[5] Takabayasi T 1952 Prog. Theor. Phys. 8 143
[6] Takabayasi T 1953 Prog. Theor. Phys. 9 187
[7] Takabayasi T 1955 Prog. Theor. Phys. 14 283

http://dx.doi.org/10.1007/BF01400372
http://dx.doi.org/10.1103/PhysRev.85.166
http://dx.doi.org/10.1103/PhysRev.85.180
http://dx.doi.org/10.1143/PTP.8.143
http://dx.doi.org/10.1143/PTP.9.187
http://dx.doi.org/10.1143/PTP.14.283


5162 D H Kobe

[8] Takabayasi T 1983 Prog. Theor. Phys. 69 1323
[9] de Broglie L 1964 The Current Interpretation of Wave Mechanics: A Critical Study ed with a chapter by

J Andrade e Silva (Amsterdam: Elsevier) chapter VIII
[10] Holland P R 1993 The Quantum Theory of Motion—an Account of the de Broglie-Bohm Causal Interpretation

of Quantum Mechanics (Cambridge: Cambridge University Press) pp 117–20
[11] Bohm D and Hiley B J 1987 Phys. Rep. 144 323
[12] Englert B-G, Scully M O, Sussmann G and Walther H 1992 Zeit. f. Naturforschung A 47 1175
[13] Leavens C R 2002 Bohm trajectory approach to timing electrons Time in Quantum Mechanics ed J G Muga,

R S Mayato and I L Egusquiza (Berlin: Springer) pp 121–52
[14] Schwengelbeck U and Faisal F H M 1995 Phys. Lett. A 199 281
[15] Zheng Y D and Kobe D H 2006 Chaos Solitons Fractals ScienceDirect.com doi:10.1016/j.chaos.2006.06.045
[16] Schwengelbeck U and Faisal F H M 1995 Phys. Lett. A 207 31
[17] Goldstein H, Poole C and Safko J 2002 Classical Mechanics 3rd edn (San Francisco: Addison-Wesley)

chapter 10
[18] Yang K-H 1976 Ann. Phys., NY 101 62
[19] Kobe D H and Yang K-H 1987 Eur. J. Phys. 8 236
[20] Kobe D H, Wen E C-T and Yang K-H 1982 Phys. Rev. D 26 1927

http://dx.doi.org/10.1143/PTP.69.1323
http://dx.doi.org/10.1016/0370-1573(87)90024-X
http://dx.doi.org/10.1016/0375-9601(95)00122-J
http://dx.doi.org/10.1016/0375-9601(95)00645-J
http://dx.doi.org/10.1016/0003-4916(76)90275-X
http://dx.doi.org/10.1088/0143-0807/8/4/002
http://dx.doi.org/10.1103/PhysRevD.26.1927

	1. Introduction
	2. de Broglie--Bohm theory for charged particle in an electromagnetic field
	3. Quantum energy and power
	4. Average quantum power and energy
	5. Ehrenfest's theorem for energy
	6. Conclusion
	Acknowledgments
	References

